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ABSTRACT 

This research is directed toward the investigation of high-power 
beam plasma interactions, with specific investigation of the transverse 
velocity beam modes called for. 

Experimental results have been obtained for the propagation charac- 
ter „Ts of the transverse plasma wave modes. They are qualitatively con- 
sistent with a traveling backward wave propagating toward the axis in a non- 
uniform plasma column whose density decreases toward the outside. The 
observed wuvenumber is about twice that predicted by the theoretical dis- 
persion relation based on a Maxwellian electron velocity distribution func- 
tion. The theory has been reformukated to accommodate arbitrary distribu- 
tion functions. The two-beam experiment has been completely set up in ■ 
form which prevents interaction in the varying perpendicular velocity region. 

This research is part of PROJECT DEFEWER, sponsored by the Advanced 
Research Project Agency, Department of Defense, and administered by the U. S. 
Army Klee ironies Command under Contract No. DA 28-O43-AMC-0182l(E). 
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1.  pmposfc 

This inveiiigttion has •• Its purpott th« tMorttlcal tftd txperl- 
mental investigation of no« (i.e., not tpoce charg«) aodet of bow plat«« 
interaction. In particular, it includes the Invest igetloe of tke feeslbillty 
of these near nodes as an improved aeans of goneration and aspiificatIon of 
nicrowaves. 

II.  I^frR0ÜUCT10N AND STATEMENT OF PROBLEM 

It is apparent from recent developments in the ilneary theory of 
plasma waves (of which electron beam waves are a subgroup) that the wave later- 
actions used thus far in devices for microwave generatior. and amplification 
represent only a small fraction of those which are possible and which should be 
considered. Performance and design limitations of existing devices are due to 
the characteristics of the particular waves used.and they may well be extended 
or removed if different waves are employed. 

The Spexij Rand Research Center (SSRC) has contracted to conduct a 
comprehensive theoretical and experimental study of particular plasma waves 
(includJrj electron beam waves) which are candidates for application to high- 
power microwave generators or amplifiers and which have not as yet been ade- 
quately investigated. 

The work being undertaken is an extension of research which has been 
in progress at SRRC. As a result of company sponsored investigations performed 
during the past three years, an important set of beam and plasma waves - the 
so-called electrostatic, cyclotron-harmonic waves - have been identified. These 
waves merit further stuiy because they remove the plasma density, magnetic field, 
and parallel phase velocity restrictions inherent in the wave modes used in 
existing devices. Their dispersion relation has been formulateu and solved for 
many interesting cases, including growing wave interactions. 

In particular the research program includes  measurement of propa- 
gation characteristics for comparison with existing linear dispersion theory; 
coordinated theoretical and experimental study of the effect of finite geome- 
try, velocity spread, and density and temperature gradients on linear propaga- 
tion haracteristics and wave impedance; a primarily experimental study of non- 
linear amplitude limiting and spurious frequency generation; and a study of the 
noise properties of the amplification medium. Special emphasis will be given to 
a search for practical methods of efficiently coupling these waves to conven- 
tional transmission lines. 

The program will also include extension of the range of solutions to 
linear plasma and beam wave dispersion relations in a search for additional wave 
modes of potential usefulness in high-power microwave devices. For while the 
past theoretical program at SRRC has been extensive, there remain many possible 
relative orientations of beam velocity, wave velocity, rf electric field and dc 
magnetic field vectors, wide ranges of parameters, and many beam and plasma 
velocity distributions of potential interest which have not yet been considered. 
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111. 

A.   uiCAt vmon or HAVES IN A UNIPMü PLASM ot wum 

TU ■w-rvlttlvUtle dlip«rtlMi rtlatloa for hlgk-frv^Macy 
tl«ctrott*tlc »•»•• U M infmiie «iiireni tltctroa Mdiua MatrtllMd by 
Mtah« IOM Is: 

^T Ex ^^(.^.-U-^pfe^iqv ' » -I 

where 

k|    =    coapoiitRt of propagatloB vector aleag 
the static M^Mtlc field.    Bo . 

k1    =    coaipon«>nl of propogstlon  vector across 
the static Mgaetic field. 

f (v^.vi)    ■    the nonsalised electroa velocity disiribuiIon. 
«here    vx    is the velocity across the field 
and    v,    is the velocity along the field. 

eB 
0   = 

m 

and  ^(kj.Vj/n) is the Bessel function of the first kind and order n with 
argument k^v^/n  . 

The importance of the distribution function in determining the 
behavior of the waves which may be supported in the medium is striking. To 
begin with, if we consider an electron beam with velocity parallel to the 
magnetic field then 

fo(vJ-,V||) = 2^ •^ 6(V|1 " V0,|) 
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•ad th« dlsp«nlM rvlatto« U 

•2 •' 

(• - kity) (« - inn),)* - n 

This •qM«tlM.  orlglMlly dltc«s**<l by Could Md Trlvelpiece. 
dMcrlb*« tM fast ud UM ipac« ckir«« ■•»•• M «vll M rim  fttt and tlo» 
faadaMatal cyclotroa *•*•*.    TU caaa af a fiaita fm dimatar has alto 
baaa dlicasiad I- datall.2   Tfca gaaaral coaclatloa drin fraa tha fiapla case 
af • ynlfora daaiit^ fiaita diawtar bav>  it  that tha gaoMtry aaraly rattricts 
iha »at af   h    valaai    (liA.ii|) «Hick caa ba mad ta tatlify (2) but that the 
laflaiie aadtua dlsperaloa eqaatloB Mitt •till ba satltflad.    The dltparslon 
diegraa far this "eald" electron baft« U given  la Flg.   |.    It «111 be noted 
thet  the tie« "negat  y# eaargy" «eves »tad far aaclllatan or aapllflers 
haer a parallel phase velecltjr less thaa the baas velocity. 

■baa electroR aotiea aboat the Haas af aagaatlc field Is taken 
lata iccaaat. aa laflalta sat af »avas la faaad.3.4    !■ addition to aodlfied 
spact, charge Mvas.  t«o Mves exist far each hanaealc af the electron cyclo- 
troa fraqaency.    One of each such pair of «avas   Is   found ta have negative 
energy.» aad can thus ba used far grasrlag »eve interaction, as Is tba slow 
space charge wave tn con^aatioaal alcrovave tubas.    The dlsparMoa curve 
show la Fig.  2 Is for a baass af aonoenerget ir.   spiral lag electrons, whose 
velocity distribution Is given by 

faU^f«) s 2^   *ifx " ^ *<f| " '0,) 

and «hose dispersion ralatloa Is 

k
2 

(3) 
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If we consider an electron beam whose distribution function is 
Maxwellian across the field and having a single velocity along the field, 
then the results of using this in Eq. (1) yields 

k2 = kj + kf = u,2 /        I (\)e -X k?v2 

JO. 
(u) - k||V0(|  - nfi) (u) - kyv0y nfl) 

(47 

where 

\ = (kxvx/n)' 

Equation (3) exhibits certain Interesting characteristics which 
in principle may be utillxed in a power generation system.    Considei  the 
function in the last sum on the right-hand side of the equation 

J? .<0)  - JL,(P) = J-(P) 4 n-1 n*l dp J.(P) 

whrrr 

P = k xvCi/n 

This faaci oa becoMS ntgstlvt wbeaever    JB(p)    aad    its derivative ar« of 
?!f?!i5?.! g"•    II IVP«"11»1*'  f" • »»fficltatly de.se be», to have 
. ? ? i!! "^f erlllc«1 P«n>««d«cultr velocity ranges for which 
VP    d/dP  JB(p)     l. eegatlve.    Too much velocity toread la the parpen- 
Icular directioa can eliminate these unstable regions,  h^ver.  slice the 

rTÜi       r*10*!1'' <«»»trlbyiioB beam does aot exhibit  this characterlstle. 
AJfL^'r1  i,,?*"!«ill0B •1»»  »«»-<«• stalled calculations of the 

-elllae distribution with variable velocity spread) and of axial velocity 
spread,  a spread «rhlch leads to the so-called "coilisioaless cyclotron 
daapieg. 
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Interaction between the transverse velocity, negative energy 
wave on the beam near the cyclotron harmonic and a circuit (or beam or 
plasma) positive energy wave leads to wave growth. This is dramatically 
illustrated in Fig. 3, where we present the negative and positive energy 
waves on a s^ggl? electron beam. As the beam electron density increases, 
the positive energy wave originating at .zero frequency for k|| = 0 (the 
fast space charge wave) couples with the negative-energy transverse veloc- 
ity wave at the cyclotron frequency, and an instability results in growing 
wave solutions.o The growth rate and frequency spectrum of these waves are 
presented in Fig. 4 for several harmonics of the electron cyclotron fre- 
quency. 

The interaction of a monoenergetic beam excited in the trans- 
verse velocity mode with a plasma whose electrons have a Maxwellian veloc- 
ity distribution has been considered under somewhat restricted conditions 
by us. We have found wave growth in the region where the axially-traveling 
beam electrons see the cyclotron harmonic frequencies after the approximate 
doppler shift. This interaction occurs if the plasma appears to be lossy 
(resistive instability) or slightly reactive (reactive instability). In 
Fig. 5 we show the results of a calculation of the reactive instability. 

The effect of boundaries in a finite beam of uniform electron 
density is subtly complicated by the non-zero orbits of the electrons. 
Those electrons traveling on field lines within a Larmor radius of the outer 
edge of the beam penetrate through the beam boundary and, hence, through 
what would be a region of radial field discontinuity. These electrons may 
Interact more strongly with harmonics of the cyclotron motion than electrons 
nearer the axis.' 

B. WE.  EFFECT OF GRADIENTS 

The importance of density and temperature gradients in beams 
or plasHi it well recognized. Because of theoretical difficulties, few 
atteapts toward adequate solutions have been made. Recently, Nickel, Parker 
and Gould0 and others investigated the effect of plasma gradients upon elec- 
trostatic waves propagating across a plasma column in order to explain the 
so-called Tonks-Oattner resonances which occur with no magnetic field. 
BuchtbMM and Hategawa and Schmitt, Meltz and FreyheitlO have considered 
wave propagation across a radial density gradient in a magnetized plasma. 
In «11 cases, it is assiwed that the change in density across a Larmor orbit 
It eithar to taall thai the gradient slightly perturbs the wave-equation or 
•e lirge that the zero nagnetic field condition is valid. 

Ealtsion  and absorption *  measurements of a plasma column 
iaatned la a aagaetic field have shown very interetting fine structure when 
the frequency of observation Is in the vicinity of twice the electron cyclo- 

ir0LlüqP**Cy <,,,d hl9,,er ^"o»*" at well). The theory of Buchsbaum and 
ha»egaws 1« that wavet can propagate within the high-dentity core of the 
plats» v-mi toward the wallt of the ditcharge tube until the wave frequency 
corr«pondt to the loctl hybrid frequency ^hybrid = /ST* n*). is long as 
the wave frequency it kett than the tecond hanaonic of the cyclotron frequency. 
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oi/A 

FIG. 3 Dispersion relation for mono-energetic, fixed perpendicultr energy 
beaü waves of frequency less than th. first cyclotron MMlMt. 
Each curve is for different beam density expressed in terms of the 
ratio uj/ri» all having Mox = O.IQ. As «»•";t|[ii

lncre""; the 

wave originating near zero frequency couples with the "^•t»'« 
energy wave below the cyclotron frequency, and wave growth ensues. 
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showing grovth rate and frequency depend upon plasma frequency. 
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At the hybrid frequency the wives become evanescent on the outside end er« 
reflected toward the interior, thus setting up a standing wave or radial 
resonant condition. The importance of radial density gradients is stressed 
by the'r analysis. 

The combination of the linearized Boltznann equation with 
Poisson's equation leads to the following differential equation for slab 
geometry: 

^ [g(x)E(x)] ♦4 T^ ■ ^rj «(x)E(x) =0  (5> 

where 

0     3eT/m uu 

(u)2 - n2)(4n2 - u)2) 

T is the electron temperature (assumed to be uniform), g(x) 
is the normalized electron density profile, and m       is the peak electron 
plasma frequency. P0 

If the medium is uniform, g = 1 and d2/dx2 -. -k2, so that 
the dispersion relation is 

C^2-«,2)^2^2 -„2^ 2(3eTL2 
po J-\ m f  po KOJ 

from which we can verify that 

k  is real where ^2 < n2 + u»2 and  2n > i«  . 

k  is real where w2 > w2 *• n2 ana 2a < u     . 
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CM« 2 fcM !>••• •Kp*rlwiii«ny M»d (iiMr«ttc«ll)r irttlM b» 
Setaltt. ■•Its Md »r»iri»lt.»0 

profll« 
Tb« foUtle« of 1^.  (5) CM bt MfllciUjr flltM f«r • MaittT 

fl(«) 

1  ♦ t W 
and It 

««>•['"iiilKiä*»,i¥i) 
where 

c = 
Üfil   2    .2 11/4 

 ■ BäJ I 
4Y(«2 -n2)(4n2 - J) 

V i1/2 

Ko f(-2 - *v      po •) -1 

and the D functions are parabolic cylinder functions. These functions 
oscillate in space in the manner of a radial standing wave, showing that 
physically the wave propagating out from the core is continuously reflected 
from the density gradient. Buchsbaum and Hasegawa's work has been extended 
by us to include cylindrical geometry, and the same essential feature of 
the standing wave pattern is found. In Fig. 6 we illustrate the nature of 
the solutions associated with waves propagating across a density gradient 
both with and without a static axial magnetic field. 

The solution given above for the non-uniform plasma is valid 
only in tue region where ID m 2n and It a result of an expansion to first 
order in the quantity (Lr d/dx), which is the ratio of Larmor orbit 
(L* - eT/mO2) to gradient scale length. In Oiüer to consider waves <n the 
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vicinity of the third harmonic, terms to second order in Lr d/dx are re- 
quired and so on. It is obvious that computational complications increase 
with higher harmonic number if such a technique is used. We propose to con- 
sider the extension of this method as well as attempting different attacks 
on the problem. 

While a plasma will probably have only slightly non-uniform elec- 
tron temperaturei an electron beam may well lr ve a velocity distribution (it 
would be incorrect to consider it a temperature) which is highly inhomogeneous 
■s a result of generation and injection methods. The terms arising from inhomo- 
geneous beam electron velocity distribution (and density gradients) in the 
Boltzmann equation are from the term v0 7r f0 , where f0 = n(r)gi(r,v1)g||(riV||). 
That is, we assume that the density and velocity variations are separable. For 
example, we could consider a local Maxwellian velocity distribution in the x 
direction. 

g1(r,v1) = r   i exp - 

2 

y—2  "^ r 2 
/2nv\o(r)      \ 2vIo(r) 

The consequences of such a distribution (or« for t'at matter« of any tempera- 
til« gradient) upon the cyclotron harmonic beam waves are not evident, but 
approaching the problem via a perturbation technique allows the insights 
obiained in the uniform analysis to be extended and applied to the very dif- 
ficult case of spatial temperature variation. That is, we can consider 

vJo(r) = vjo [l ♦ Y^)2] 

«Mr«   Y    It • small number and    l    is the ueam radius. 

We are exploring,  as one possible coupling mechanism,  the non- 
unifor» plasm« resonances discussed In the previous section.    These resonances 
set up the high-order radial field variations required to excite transverse 
velocity b«M waves.    The resonances themselves may be excited by electrodes 
wWtch are located entirely outside the beam-plasma region.    (See Fig. 8.) 

Many experiments related to this aspect have been conducted. 
Froa these experiments,  it appears that the core resonances in a plasma are 
stroagly excited by an external circuit.    The depth of the absorption Is well 
tllustraied la Fig. 7. which shows oscilloscope   traces of resonant dips in 
rifl#cted power «s viewed on a strip line excited at a frequency of 400 Mc/sec. 

trac.   it for the indicated ratio of wave frequency to cyclotron frequency; 
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FIG. 7   Experimentally observed radial elttiroB plaaaa wav« -rjoaaarai 
in the core of a cylindrical plaau to\mm for dlffereai u^netic 
field «trengths, obaerved in reflection  in a aeoa aflerglo« plaiaa, 
0.02 torr,  f = 400 Mf/«ec.  time tcalt 0.2 ««e/dU.    Welt d«pta of 
resonant structure. 
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•11 traces art in the vicinity of the second haroonic of the cyclotron fre- 
quency, as predicted by the dispersion relation of Bernstein^ fron longitu- 
dinal waves propagating across the magnetic field. 

IV.  NOBK PEBFOSMED DIKING BEPORT PERIOD 

A. Coupling Techniques 

1. Theory 

The experimental results of the electrostatic waves propagating in 
the plasma component of the beam-plasma system have shown consistently that 
the waves do not obey the dispersion relation predicted by Bernstein [12]. 
For P given frequency the waves are observed to have a wave number about twice 
that which is predicted for a Maxwellian plasma. This results in a marked 
change in the plasma slab impedance at a giver, frequency than that which is 
predicted for a plasma with a Maxwellian velocity distribution (see report 
ECOM-01821-3).  In order to determine whether a non-Maxwellian plasma could 
account for the experimental dispersion relation an attempt to determine the 
theoretical uu , k relation for general distribution functions is being pro- 
grammed. 

The equation governing the electrostatic waves propagating across 
the magnetic field is 

2 « 2tTj;;(k.v,/n) 3f(v.) 

which is obtained by setting k||=0 in Eq. (1) and integrating over the axial 
velocity, V|| . 

Initially, two distributions will be considered, the exponential 

2TT kT 
(8a) 

and the Druyvestyn 

f Tv 1 --L f-E-l     -((v^TTHm/kT)2) ^ yvj --^ (-j^)  e       -L Ob) 
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Both distribution« are nonuliMd and have second aoaentt equal to 
the second ooaent of the Maxwellian distribution so thyt 

making the energy equal in all cases. 

-3 
In a low pressure discharge (pressure ^ 10  Torr) it is expected 

that the distribution is more like Eq. (8a) whereas Eq. (8b) is the theoreti- 
cal velocity distribution for a high pressure dc discharge. 

2. Exp<jrimeni 

In order to verify that the experimental technique previously 
employed had bean valid and that the expefriraentally determined values for 
wavelength weire not off by a factor of two as a result of the measurement 
technique the wav-j probing experiments were repeated using the set up shown 
in Fig. 9. 

The signal driving the plasma oscillations is split in two by the 
3 dB directional coupler. The impedance of the probe in the plasma is tuned 
by a short-circuited line and the probe signal coupled out by a 10 dB coupler. 
This signal is phase shifted by means of a motor-driven delay line and com- 
bined with the reference signal in a 10 dB coupler. This combined signal is 
detected and recorded as a function of position on an xy recorder. An atten- 
uator pad was added to the reference to test the circuit operation. Since 
the crystal detector operates as a square-law device, its low frequency out- 
put contains the terms 

S0(x) = Sp(x) + SR + 23p(x) SR cos cp(x) (9) 

whare:      Sn^x) l6 the probe signal and Is a function of 
position, x , within the plasma; 

SR   Is the amplitude of the reference signal 
and Is Independent of probe position; 

and        cpCx)  Is the phase difference between the 
reference and probe channel which, In general, 
will be a function of position (x) . 

If a standing wave were present in the plasma the phase cp(x) 
would be Independent of position, and S (x) would vary spatially In a 
sinusoidal like manner whereas for traveling wave, cos cp(x) would vary 
In a sinusoidal manner and S (x) would vary slowly (as a result of the 
plasma Inhomogenelty).     p 
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FIG. 9 Experimental ,et up for the detection of the phase velocity of the 
electroitatic »avea propagating aero.» the plan, coluam * 
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Consider the case in question. If sR=0 and only a traveling 
wave were present then the output. s|(x) . wpu!d be independent of po 1? 
ifnf"    I'  .C-ntrary t0 previ0US •*'l««"ti. (See report ESOM-0,82 E)-l ) 
Jn*l     f fndln9 ?aVe Were Present •hen the sPatial oscillations moa ured would be at twice the spatial frequency 2k. (k, being the soatial f.! 

STJistnl^fttT^^*2 Sh0Uld h™  ^enlnJ^r ^tJd^d^fer tly than was done. If a traveling cr a standing wave were present with a laraer 

r STout b:9nkal of TIT'IT: 
miftioB then the sp'tiai äVSS! 

Sauitv  ! f    t ? PK Sent exPerirnent is designed to eliminate this 
ambiguity. SR is set to be very much larger than Sp and so one has 

S0(X)« 2SR Sp(x) cos cp(x) dO) 

In order that the condition SD » S  be checked a «Pt «f m-o, 

iunBenpadrresinackent:ith rpad in the refere"ee "»•««" %**%* 
Jor ?he 3 dB aJd 10 HR ^ ^^ t0 the 0 dB Pad case was 0-7 ^0.3 lor the 3 dB and 10 dB cases respectively, the conditions  were satisfied. 

Probe output vs position were then ta^en for a set of lenath« 

rWl   «: bVeariable
t;

ine\ SeVeral examples of thesrare si' 
bu?*tha; til Tftlt Seen that the Spatial pattern is essentially the    arne 
ThJ. ll. i! ?!f e ■ m°Ves 0Utward as the delay i" the probe line increases 
toilr/t* POf tiVe i?dl0af^n of a wave whose P^se velocity       JiJected 

set of dataMkS; 11 %?**' ^ Pu
osition of ^ maxima and^jni.ima of the 

he cycJotron freavencv   Til ÜV* nei9hbo^0^ of the third harmonic of 

B.    Two-Bean Experiment 

The nhv^«!16 t
tW0"?eam ^Periment was remounted after a cathode failure 

The physical structure has been changed as well     The "linear" K«!:?!!* 
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FIG. 10 Probe signal vs probe distance from axis for several delay times 
in probe signal line. The time delays are indicated in nano- 
seconds on the curves. It can be seen that the peaks move out- 
ward indicating that the wave is moving inward. The curves were 
taken in a 10 mA Hg discharge at 485 MHz with the cyclotron fre- 
quency at 175 MHz and are displaced from one another for clarity. 
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FIG. 12 The local phase velocity obtained from Fig. 11 plotted as a 
function of radial position. Note that the waves are propa- 
gating toward the axis. 
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FIG. 13 New experimental set up for the two-beam experiment. 
Perpendicular energy is added to the solid beam 
whereas the hollow beam receives none. The new 
arrangement allows for beam collection in such a 
manner that interaction takes place in region of 
constant predictable beam parameters. 
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